3.512 \(\int \tan ^3(c+d x) (a+b \tan (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=181 \[ -\frac{4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac{2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}-\frac{2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac{2 a \sqrt{a+b \tan (c+d x)}}{d}+\frac{(a-i b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}+\frac{(a+i b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d} \]

[Out]

((a - I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d + ((a + I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[
c + d*x]]/Sqrt[a + I*b]])/d - (2*a*Sqrt[a + b*Tan[c + d*x]])/d - (2*(a + b*Tan[c + d*x])^(3/2))/(3*d) - (4*a*(
a + b*Tan[c + d*x])^(5/2))/(35*b^2*d) + (2*Tan[c + d*x]*(a + b*Tan[c + d*x])^(5/2))/(7*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.370082, antiderivative size = 181, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 8, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.348, Rules used = {3566, 3630, 12, 3528, 3539, 3537, 63, 208} \[ -\frac{4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac{2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}-\frac{2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac{2 a \sqrt{a+b \tan (c+d x)}}{d}+\frac{(a-i b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}+\frac{(a+i b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^3*(a + b*Tan[c + d*x])^(3/2),x]

[Out]

((a - I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d + ((a + I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[
c + d*x]]/Sqrt[a + I*b]])/d - (2*a*Sqrt[a + b*Tan[c + d*x]])/d - (2*(a + b*Tan[c + d*x])^(3/2))/(3*d) - (4*a*(
a + b*Tan[c + d*x])^(5/2))/(35*b^2*d) + (2*Tan[c + d*x]*(a + b*Tan[c + d*x])^(5/2))/(7*b*d)

Rule 3566

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(m + n - 1)), x] + Dist[1/(d*(m + n -
1)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^n*Simp[a^3*d*(m + n - 1) - b^2*(b*c*(m - 2) + a*d*(
1 + n)) + b*d*(m + n - 1)*(3*a^2 - b^2)*Tan[e + f*x] - b^2*(b*c*(m - 2) - a*d*(3*m + 2*n - 4))*Tan[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& IntegerQ[2*m] && GtQ[m, 2] && (GeQ[n, -1] || IntegerQ[m]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[c, 0]
&& NeQ[a, 0])))

Rule 3630

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(C*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \tan ^3(c+d x) (a+b \tan (c+d x))^{3/2} \, dx &=\frac{2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}+\frac{2 \int (a+b \tan (c+d x))^{3/2} \left (-a-\frac{7}{2} b \tan (c+d x)-a \tan ^2(c+d x)\right ) \, dx}{7 b}\\ &=-\frac{4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac{2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}+\frac{2 \int -\frac{7}{2} b \tan (c+d x) (a+b \tan (c+d x))^{3/2} \, dx}{7 b}\\ &=-\frac{4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac{2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}-\int \tan (c+d x) (a+b \tan (c+d x))^{3/2} \, dx\\ &=-\frac{2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac{4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac{2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}-\int (-b+a \tan (c+d x)) \sqrt{a+b \tan (c+d x)} \, dx\\ &=-\frac{2 a \sqrt{a+b \tan (c+d x)}}{d}-\frac{2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac{4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac{2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}-\int \frac{-2 a b+\left (a^2-b^2\right ) \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=-\frac{2 a \sqrt{a+b \tan (c+d x)}}{d}-\frac{2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac{4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac{2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}+\frac{1}{2} \left (i (a-i b)^2\right ) \int \frac{1+i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx-\frac{1}{2} \left (i (a+i b)^2\right ) \int \frac{1-i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=-\frac{2 a \sqrt{a+b \tan (c+d x)}}{d}-\frac{2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac{4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac{2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}-\frac{(a-i b)^2 \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}-\frac{(a+i b)^2 \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}\\ &=-\frac{2 a \sqrt{a+b \tan (c+d x)}}{d}-\frac{2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac{4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac{2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}-\frac{\left (i (a-i b)^2\right ) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}+\frac{\left (i (a+i b)^2\right ) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}\\ &=\frac{(a-i b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}+\frac{(a+i b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}-\frac{2 a \sqrt{a+b \tan (c+d x)}}{d}-\frac{2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac{4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac{2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}\\ \end{align*}

Mathematica [A]  time = 1.54767, size = 170, normalized size = 0.94 \[ \frac{2 \sqrt{a+b \tan (c+d x)} \left (b \left (3 a^2-35 b^2\right ) \tan (c+d x)-2 a \left (3 a^2+70 b^2\right )+24 a b^2 \tan ^2(c+d x)+15 b^3 \tan ^3(c+d x)\right )}{105 b^2 d}+\frac{(a-i b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}+\frac{(a+i b)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^3*(a + b*Tan[c + d*x])^(3/2),x]

[Out]

((a - I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d + ((a + I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[
c + d*x]]/Sqrt[a + I*b]])/d + (2*Sqrt[a + b*Tan[c + d*x]]*(-2*a*(3*a^2 + 70*b^2) + b*(3*a^2 - 35*b^2)*Tan[c +
d*x] + 24*a*b^2*Tan[c + d*x]^2 + 15*b^3*Tan[c + d*x]^3))/(105*b^2*d)

________________________________________________________________________________________

Maple [B]  time = 0.044, size = 863, normalized size = 4.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^3*(a+b*tan(d*x+c))^(3/2),x)

[Out]

2/7/d/b^2*(a+b*tan(d*x+c))^(7/2)-2/5*a*(a+b*tan(d*x+c))^(5/2)/b^2/d-2/3*(a+b*tan(d*x+c))^(3/2)/d-2*a*(a+b*tan(
d*x+c))^(1/2)/d-1/4/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*
(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)+1/2/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2
)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b
*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+1/d*b^2/(2*(a^2+b^2)^(1/2
)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+1/
d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(
1/2)-2*a)^(1/2))*(a^2+b^2)^(1/2)*a+1/4/d*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-
a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)-1/2/d*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^
(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/d/(2*(a^2+b^2)^(1/2)-2*a)^(
1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2-1/d*b^
2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(
1/2)-2*a)^(1/2))-1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1
/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2+b^2)^(1/2)*a

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}} \tan \left (d x + c\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3*(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*tan(d*x + c) + a)^(3/2)*tan(d*x + c)^3, x)

________________________________________________________________________________________

Fricas [B]  time = 6.91894, size = 9457, normalized size = 52.25 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3*(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/420*(420*sqrt(2)*b^2*d^5*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 - (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2
 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(3/4)*sqrt(
(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4)*arctan(((3*a^10 + 11*a^8*b^2 + 14*a^6*b^4 + 6*a^4*b^6 - a^2*b^8 - b^10)*d^4
*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4) + (3*a^13 + 14*a^11*b^2
 + 25*a^9*b^4 + 20*a^7*b^6 + 5*a^5*b^8 - 2*a^3*b^10 - a*b^12)*d^2*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4) + sq
rt(2)*((3*a^5 + 2*a^3*b^2 - a*b^4)*d^7*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*sqrt((9*a^4*b^2 - 6*a^2*b
^4 + b^6)/d^4) + (3*a^8 + 2*a^6*b^2 - 4*a^4*b^4 - 2*a^2*b^6 + b^8)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4)
)*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 - (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))
/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*a^4*b^2 + 3*a^2
*b^4 + b^6)/d^4)^(3/4) + sqrt(2)*(a*d^7*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*sqrt((9*a^4*b^2 - 6*a^2*
b^4 + b^6)/d^4) + (a^4 - b^4)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 +
 b^6 - (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt(
((9*a^8 + 12*a^6*b^2 - 2*a^4*b^4 - 4*a^2*b^6 + b^8)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x
+ c) + sqrt(2)*((9*a^6 - 15*a^4*b^2 + 7*a^2*b^4 - b^6)*d^3*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d
*x + c) + (9*a^9 + 12*a^7*b^2 - 2*a^5*b^4 - 4*a^3*b^6 + a*b^8)*d*cos(d*x + c))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b
^4 + b^6 - (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*s
qrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4) + (9*a^11
+ 21*a^9*b^2 + 10*a^7*b^4 - 6*a^5*b^6 - 3*a^3*b^8 + a*b^10)*cos(d*x + c) + (9*a^10*b + 21*a^8*b^3 + 10*a^6*b^5
 - 6*a^4*b^7 - 3*a^2*b^9 + b^11)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6
)/d^4)^(3/4))/(9*a^14*b^2 + 39*a^12*b^4 + 61*a^10*b^6 + 35*a^8*b^8 - 5*a^6*b^10 - 11*a^4*b^12 - a^2*b^14 + b^1
6))*cos(d*x + c)^3 + 420*sqrt(2)*b^2*d^5*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 - (a^3 - 3*a*b^2)*d^2*sqrt((a
^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^
4)^(3/4)*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4)*arctan(-((3*a^10 + 11*a^8*b^2 + 14*a^6*b^4 + 6*a^4*b^6 - a^2*
b^8 - b^10)*d^4*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4) + (3*a^1
3 + 14*a^11*b^2 + 25*a^9*b^4 + 20*a^7*b^6 + 5*a^5*b^8 - 2*a^3*b^10 - a*b^12)*d^2*sqrt((9*a^4*b^2 - 6*a^2*b^4 +
 b^6)/d^4) - sqrt(2)*((3*a^5 + 2*a^3*b^2 - a*b^4)*d^7*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*sqrt((9*a^
4*b^2 - 6*a^2*b^4 + b^6)/d^4) + (3*a^8 + 2*a^6*b^2 - 4*a^4*b^4 - 2*a^2*b^6 + b^8)*d^5*sqrt((9*a^4*b^2 - 6*a^2*
b^4 + b^6)/d^4))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 - (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b
^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*
a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(3/4) - sqrt(2)*(a*d^7*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*sqrt((9*a
^4*b^2 - 6*a^2*b^4 + b^6)/d^4) + (a^4 - b^4)*d^5*sqrt((9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))*sqrt((a^6 + 3*a^4*b^
2 + 3*a^2*b^4 + b^6 - (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^
4 + b^6))*sqrt(((9*a^8 + 12*a^6*b^2 - 2*a^4*b^4 - 4*a^2*b^6 + b^8)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6
)/d^4)*cos(d*x + c) - sqrt(2)*((9*a^6 - 15*a^4*b^2 + 7*a^2*b^4 - b^6)*d^3*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 +
b^6)/d^4)*cos(d*x + c) + (9*a^9 + 12*a^7*b^2 - 2*a^5*b^4 - 4*a^3*b^6 + a*b^8)*d*cos(d*x + c))*sqrt((a^6 + 3*a^
4*b^2 + 3*a^2*b^4 + b^6 - (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^
2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(
1/4) + (9*a^11 + 21*a^9*b^2 + 10*a^7*b^4 - 6*a^5*b^6 - 3*a^3*b^8 + a*b^10)*cos(d*x + c) + (9*a^10*b + 21*a^8*b
^3 + 10*a^6*b^5 - 6*a^4*b^7 - 3*a^2*b^9 + b^11)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*((a^6 + 3*a^4*b^2 +
3*a^2*b^4 + b^6)/d^4)^(3/4))/(9*a^14*b^2 + 39*a^12*b^4 + 61*a^10*b^6 + 35*a^8*b^8 - 5*a^6*b^10 - 11*a^4*b^12 -
 a^2*b^14 + b^16))*cos(d*x + c)^3 + 105*sqrt(2)*((a^3*b^2 - 3*a*b^4)*d^3*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b
^6)/d^4)*cos(d*x + c)^3 + (a^6*b^2 + 3*a^4*b^4 + 3*a^2*b^6 + b^8)*d*cos(d*x + c)^3)*sqrt((a^6 + 3*a^4*b^2 + 3*
a^2*b^4 + b^6 - (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^
6))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4)*log(((9*a^8 + 12*a^6*b^2 - 2*a^4*b^4 - 4*a^2*b^6 + b^8)*d^
2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x + c) + sqrt(2)*((9*a^6 - 15*a^4*b^2 + 7*a^2*b^4 - b^6)
*d^3*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x + c) + (9*a^9 + 12*a^7*b^2 - 2*a^5*b^4 - 4*a^3*b^6
+ a*b^8)*d*cos(d*x + c))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 - (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 +
 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((
a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4) + (9*a^11 + 21*a^9*b^2 + 10*a^7*b^4 - 6*a^5*b^6 - 3*a^3*b^8 + a*
b^10)*cos(d*x + c) + (9*a^10*b + 21*a^8*b^3 + 10*a^6*b^5 - 6*a^4*b^7 - 3*a^2*b^9 + b^11)*sin(d*x + c))/((a^2 +
 b^2)*cos(d*x + c))) - 105*sqrt(2)*((a^3*b^2 - 3*a*b^4)*d^3*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(
d*x + c)^3 + (a^6*b^2 + 3*a^4*b^4 + 3*a^2*b^6 + b^8)*d*cos(d*x + c)^3)*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6
 - (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*((a^6 + 3
*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4)*log(((9*a^8 + 12*a^6*b^2 - 2*a^4*b^4 - 4*a^2*b^6 + b^8)*d^2*sqrt((a^6 +
 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x + c) - sqrt(2)*((9*a^6 - 15*a^4*b^2 + 7*a^2*b^4 - b^6)*d^3*sqrt((a^
6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x + c) + (9*a^9 + 12*a^7*b^2 - 2*a^5*b^4 - 4*a^3*b^6 + a*b^8)*d*co
s(d*x + c))*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6 - (a^3 - 3*a*b^2)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 +
b^6)/d^4))/(9*a^4*b^2 - 6*a^2*b^4 + b^6))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*a^4*b
^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4) + (9*a^11 + 21*a^9*b^2 + 10*a^7*b^4 - 6*a^5*b^6 - 3*a^3*b^8 + a*b^10)*cos(d*x
 + c) + (9*a^10*b + 21*a^8*b^3 + 10*a^6*b^5 - 6*a^4*b^7 - 3*a^2*b^9 + b^11)*sin(d*x + c))/((a^2 + b^2)*cos(d*x
 + c))) - 8*(2*(3*a^9 + 91*a^7*b^2 + 255*a^5*b^4 + 249*a^3*b^6 + 82*a*b^8)*cos(d*x + c)^3 - 24*(a^7*b^2 + 3*a^
5*b^4 + 3*a^3*b^6 + a*b^8)*cos(d*x + c) - (15*a^6*b^3 + 45*a^4*b^5 + 45*a^2*b^7 + 15*b^9 + (3*a^8*b - 41*a^6*b
^3 - 141*a^4*b^5 - 147*a^2*b^7 - 50*b^9)*cos(d*x + c)^2)*sin(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/
cos(d*x + c)))/((a^6*b^2 + 3*a^4*b^4 + 3*a^2*b^6 + b^8)*d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \tan{\left (c + d x \right )}\right )^{\frac{3}{2}} \tan ^{3}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**3*(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral((a + b*tan(c + d*x))**(3/2)*tan(c + d*x)**3, x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3*(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out